Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Neutron Sciences Directorate (11)
Researcher
- Brian Post
- Peter Wang
- Andrzej Nycz
- Chris Masuo
- Blane Fillingim
- Peeyush Nandwana
- Srikanth Yoginath
- Sudarsanam Babu
- Thomas Feldhausen
- Ahmed Hassen
- Chad Steed
- J.R. R Matheson
- James J Nutaro
- Joshua Vaughan
- Junghoon Chae
- Lauren Heinrich
- Luke Meyer
- Pratishtha Shukla
- Rangasayee Kannan
- Sudip Seal
- Travis Humble
- William Carter
- Yousub Lee
- Adam Stevens
- Alexander I Kolesnikov
- Alexei P Sokolov
- Alex Roschli
- Alex Walters
- Ali Passian
- Amit Shyam
- Bekki Mills
- Brian Gibson
- Bruce Hannan
- Bryan Lim
- Cameron Adkins
- Christopher Fancher
- Chris Tyler
- Craig Blue
- Dave Willis
- David Olvera Trejo
- Gordon Robertson
- Harper Jordan
- Isha Bhandari
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- Joel Asiamah
- Joel Dawson
- John Lindahl
- John Potter
- John Wenzel
- Keju An
- Liam White
- Loren L Funk
- Luke Chapman
- Mark Loguillo
- Matthew B Stone
- Michael Borish
- Nance Ericson
- Pablo Moriano Salazar
- Polad Shikhaliev
- Ritin Mathews
- Roger G Miller
- Ryan Dehoff
- Samudra Dasgupta
- Sarah Graham
- Scott Smith
- Shannon M Mahurin
- Steven Guzorek
- Sydney Murray III
- Tao Hong
- Theodore Visscher
- Tomas Grejtak
- Tomonori Saito
- Varisara Tansakul
- Vasilis Tzoganis
- Vasiliy Morozov
- Victor Fanelli
- Vladislav N Sedov
- Vlastimil Kunc
- William Peter
- Yacouba Diawara
- Yiyu Wang
- Yukinori Yamamoto
- Yun Liu

We presented a novel apparatus and method for laser beam position detection and pointing stabilization using analog position-sensitive diodes (PSDs).

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

Neutron scattering experiments cover a large temperature range in which experimenters want to test their samples.

Digital twins (DTs) have emerged as essential tools for monitoring, predicting, and optimizing physical systems by using real-time data.

Simulation cloning is a technique in which dynamically cloned simulations’ state spaces differ from their parent simulation due to intervening events.

The QVis Quantum Device Circuit Optimization Module gives users the ability to map a circuit to a specific quantum devices based on the device specifications.

QVis is a visual analytics tool that helps uncover temporal and multivariate variations in noise properties of quantum devices.