Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Fusion and Fission Energy and Science Directorate (21)
Researcher
- Srikanth Yoginath
- Venugopal K Varma
- Chad Steed
- Hongbin Sun
- James J Nutaro
- Junghoon Chae
- Mahabir Bhandari
- Prashant Jain
- Pratishtha Shukla
- Sudip Seal
- Travis Humble
- Adam Aaron
- Alexander I Wiechert
- Ali Passian
- Andrew F May
- Ben Garrison
- Benjamin Manard
- Brad Johnson
- Brandon A Wilson
- Bryan Lim
- Callie Goetz
- Charles D Ottinger
- Charles F Weber
- Christopher Hobbs
- Costas Tsouris
- Eddie Lopez Honorato
- Fred List III
- Govindarajan Muralidharan
- Harper Jordan
- Hsin Wang
- Ian Greenquist
- Ilias Belharouak
- Isaac Sikkema
- Joanna Mcfarlane
- Joel Asiamah
- Joel Dawson
- Jonathan Willocks
- Joseph Olatt
- Keith Carver
- Kunal Mondal
- Mahim Mathur
- Matt Kurley III
- Matt Vick
- Mike Zach
- Mingyan Li
- Nance Ericson
- Nate See
- N Dianne Ezell
- Nedim Cinbiz
- Nithin Panicker
- Oscar Martinez
- Pablo Moriano Salazar
- Peeyush Nandwana
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Rangasayee Kannan
- Richard Howard
- Rodney D Hunt
- Rose Montgomery
- Ruhul Amin
- Ryan Heldt
- Sam Hollifield
- Samudra Dasgupta
- Sergey Smolentsev
- Steven J Zinkle
- Thomas Butcher
- Thomas R Muth
- Tomas Grejtak
- Tyler Gerczak
- Ugur Mertyurek
- Vandana Rallabandi
- Varisara Tansakul
- Vishaldeep Sharma
- Vittorio Badalassi
- Yanli Wang
- Ying Yang
- Yiyu Wang
- Yutai Kato

QVis is a visual analytics tool that helps uncover temporal and multivariate variations in noise properties of quantum devices.

Fusion reactors need efficient systems to create tritium fuel and handle intense heat and radiation. Traditional liquid metal systems face challenges like high pressure losses and material breakdown in strong magnetic fields.

Currently there is no capability to test materials, sensors, and nuclear fuels at extremely high temperatures and under radiation conditions for nuclear thermal rocket propulsion or advanced reactors.

The traditional window installation process involves many steps. These are becoming even more complex with newer construction requirements such as installation of windows over exterior continuous insulation walls.

Recent advances in magnetic fusion (tokamak) technology have attracted billions of dollars of investments in startups from venture capitals and corporations to develop devices demonstrating net energy gain in a self-heated burning plasma, such as SPARC (under construction) and

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.

Knowing the state of charge of lithium-ion batteries, used to power applications from electric vehicles to medical diagnostic equipment, is critical for long-term battery operation.

The use of Fluidized Bed Chemical Vapor Deposition to coat particles or fibers is inherently slow and capital intensive, as it requires constant modifications to the equipment to account for changes in the characteristics of the substrates to be coated.

Real-time tracking and monitoring of radioactive/nuclear materials during transportation is a critical need to ensure safety and security. Current technologies rely on simple tagging, using sensors attached to transport containers, but they have limitations.