Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Tomonori Saito
- Anisur Rahman
- Diana E Hun
- Jeff Foster
- Mary Danielson
- Srikanth Yoginath
- Syed Islam
- Alexei P Sokolov
- Catalin Gainaru
- Chad Steed
- James J Nutaro
- Junghoon Chae
- Michelle Lehmann
- Natasha Ghezawi
- Pratishtha Shukla
- Ramesh Bhave
- Sudip Seal
- Travis Humble
- Vera Bocharova
- Zoriana Demchuk
- Achutha Tamraparni
- Alex Roschli
- Ali Passian
- Benjamin L Doughty
- Brian Post
- Bryan Lim
- Cameron Adkins
- Corson Cramer
- Gina Accawi
- Gurneesh Jatana
- Harper Jordan
- Isaiah Dishner
- Isha Bhandari
- Joel Asiamah
- Joel Dawson
- Josh Michener
- Karen Cortes Guzman
- Kuma Sumathipala
- Liam White
- Liangyu Qian
- Mark M Root
- Mengjia Tang
- Michael Borish
- Nance Ericson
- Nick Galan
- Nick Gregorich
- Pablo Moriano Salazar
- Peeyush Nandwana
- Philip Boudreaux
- Rangasayee Kannan
- Robert Sacci
- Samudra Dasgupta
- Santanu Roy
- Shailesh Dangwal
- Shannon M Mahurin
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Singanallur Venkatakrishnan
- Som Shrestha
- Tao Hong
- Tomas Grejtak
- Uvinduni Premadasa
- Varisara Tansakul
- Yiyu Wang

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

PET is used in many commercial products, but only a fraction is mechanically recycled, and even less is chemically recycled.

Developed a novel energy efficient, cost-effective, environmentally friendly process for separation of lithium from end-of-life lithium-ion batteries.

This work presents a novel method for upcycling polyethylene terephthalate (PET) waste into sustainable vitrimer materials. By combining bio-based crosslinkers with our PET-based macromonomer, we developed dynamically bonded plastics that are renewably sourced.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

This invention focuses on improving the ceramic yield of preceramic polymers by tuning the crosslinking process that occurs during vat photopolymerization (VP).

This invention introduces an innovative method for upcycling waste polyalkenamers, such as polybutadiene and acrylonitrile butadiene styrene, into high-performance materials through ring-opening metathesis polymerization (ROMP).

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.