Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Srikanth Yoginath
- James J Nutaro
- Pratishtha Shukla
- Sudip Seal
- Alexander I Wiechert
- Ali Passian
- Benjamin Manard
- Charles F Weber
- Costas Tsouris
- Debangshu Mukherjee
- Derek Dwyer
- Harper Jordan
- Joanna Mcfarlane
- Joel Asiamah
- Joel Dawson
- Jonathan Willocks
- Louise G Evans
- Matt Vick
- Md Inzamam Ul Haque
- Mengdawn Cheng
- Nance Ericson
- Olga S Ovchinnikova
- Pablo Moriano Salazar
- Paula Cable-Dunlap
- Richard L. Reed
- Vandana Rallabandi
- Varisara Tansakul

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

Digital twins (DTs) have emerged as essential tools for monitoring, predicting, and optimizing physical systems by using real-time data.

Simulation cloning is a technique in which dynamically cloned simulations’ state spaces differ from their parent simulation due to intervening events.

Pyrolysis evolved gas analysis – mass spectrometry (EGA-MS) and pyrolysis gas chromatography – MS (GC-MS) – are powerful analytical tools for polymer characterization.

We have developed an aerosol sampling technique to enable collection of trace materials such as actinides in the atmosphere.

This innovative approach combines optical and spectral imaging data via machine learning to accurately predict cancer labels directly from tissue images.