Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Adam M Guss
- Joseph Chapman
- Nicholas Peters
- Alexey Serov
- Andrzej Nycz
- Biruk A Feyissa
- Carrie Eckert
- Hsuan-Hao Lu
- Jaswinder Sharma
- Joseph Lukens
- Josh Michener
- Kuntal De
- Muneer Alshowkan
- Udaya C Kalluri
- Vilmos Kertesz
- Xiang Lyu
- Xiaohan Yang
- Alex Walters
- Amit K Naskar
- Anees Alnajjar
- Austin Carroll
- Beth L Armstrong
- Brian Sanders
- Brian Williams
- Chris Masuo
- Clay Leach
- Daniel Jacobson
- Debjani Pal
- Gabriel Veith
- Georgios Polyzos
- Gerald Tuskan
- Holly Humphrey
- Ilenne Del Valle Kessra
- Isaiah Dishner
- James Szybist
- Jay D Huenemann
- Jeff Foster
- Jerry Parks
- Joanna Tannous
- John F Cahill
- Jonathan Willocks
- Junbin Choi
- Khryslyn G Araño
- Kyle Davis
- Liangyu Qian
- Logan Kearney
- Mariam Kiran
- Marm Dixit
- Meghan Lamm
- Michael Toomey
- Michelle Lehmann
- Nandhini Ashok
- Nihal Kanbargi
- Paul Abraham
- Ritu Sahore
- Serena Chen
- Todd Toops
- Vincent Paquit
- Yang Liu
- Yasemin Kaygusuz

Mechanism-Based Biological Inference via Multiplex Networks, AI Agents and Cross-Species Translation
This invention provides a platform that uses AI agents and biological networks to uncover and interpret disease-relevant biological mechanisms.

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.