Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate
(23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Adam M Guss
- Josh Michener
- Xiaohan Yang
- Alex Walters
- Andrzej Nycz
- Austin Carroll
- Brian Sanders
- Carrie Eckert
- Clay Leach
- Diana E Hun
- Easwaran Krishnan
- Gerald Tuskan
- Ilenne Del Valle Kessra
- Isaiah Dishner
- James Manley
- Jamieson Brechtl
- Jay D Huenemann
- Jeff Foster
- Jerry Parks
- Joanna Tannous
- Joe Rendall
- John F Cahill
- Karen Cortes Guzman
- Kashif Nawaz
- Kuma Sumathipala
- Kyle Davis
- Liangyu Qian
- Mengjia Tang
- Muneeshwaran Murugan
- Paul Abraham
- Serena Chen
- Tomonori Saito
- Udaya C Kalluri
- Vilmos Kertesz
- Vincent Paquit
- Yang Liu
- Zoriana Demchuk

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

Estimates based on the U.S. Department of Energy (DOE) test procedure for water heaters indicate that the equivalent of 350 billion kWh worth of hot water is discarded annually through drains, and a large portion of this energy is, in fact, recoverable.

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

This technology identifies enzymatic routes to synthesize amide oligomers with defined sequence to improve polymerization of existing materials or enable polymerization of new materials. Polymers are generally composed of one (e.g. Nylon 6) or two (e.g.

The technologies described provides for the upcycling of mixed plastics to muonic acid and 3-hydroxyacids.

This invention is for bacterial strains that can utilize lignocellulose sugars. This will improve the efficiency of bioproduct formation in these strains and reduce the greenhouse-gas emission of an industrial bi

ORNL has developed bacterial strains that can utilize a common plastic co-monomer as a feedstock. This will help enable modern, petroleum-derived plastics to be converted into value-added chemicals.

Direct-acting antivirals are needed to combat coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2).