Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
- (-) Fusion and Fission Energy and Science Directorate (21)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Steven Guzorek
- Brian Post
- Peeyush Nandwana
- Vipin Kumar
- David Nuttall
- Soydan Ozcan
- Sudarsanam Babu
- Thomas Feldhausen
- Venugopal K Varma
- Amit Shyam
- Blane Fillingim
- Dan Coughlin
- Hongbin Sun
- Jim Tobin
- Lauren Heinrich
- Mahabir Bhandari
- Prashant Jain
- Pum Kim
- Rangasayee Kannan
- Segun Isaac Talabi
- Steven J Zinkle
- Tyler Smith
- Uday Vaidya
- Umesh N MARATHE
- Yanli Wang
- Ying Yang
- Yousub Lee
- Yutai Kato
- Adam Aaron
- Adam Stevens
- Alexander I Wiechert
- Alex Plotkowski
- Alex Roschli
- Andres Marquez Rossy
- Andrew F May
- Ben Garrison
- Benjamin Manard
- Brad Johnson
- Brandon A Wilson
- Brittany Rodriguez
- Bruce A Pint
- Bryan Lim
- Callie Goetz
- Charles D Ottinger
- Charles F Weber
- Christopher Fancher
- Christopher Hobbs
- Costas Tsouris
- Craig Blue
- Eddie Lopez Honorato
- Erin Webb
- Evin Carter
- Fred List III
- Georges Chahine
- Gordon Robertson
- Govindarajan Muralidharan
- Halil Tekinalp
- Hsin Wang
- Ian Greenquist
- Ilias Belharouak
- Isaac Sikkema
- Jay Reynolds
- Jeff Brookins
- Jeremy Malmstead
- Joanna Mcfarlane
- John Lindahl
- Jonathan Willocks
- Joseph Olatt
- Josh Crabtree
- Julian Charron
- Katie Copenhaver
- Keith Carver
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Kunal Mondal
- Mahim Mathur
- Matt Kurley III
- Matt Vick
- Merlin Theodore
- Mike Zach
- Mingyan Li
- Nadim Hmeidat
- Nate See
- N Dianne Ezell
- Nedim Cinbiz
- Nithin Panicker
- Oluwafemi Oyedeji
- Oscar Martinez
- Peter Wang
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Richard Howard
- Rodney D Hunt
- Rose Montgomery
- Ruhul Amin
- Ryan Dehoff
- Ryan Heldt
- Ryan Ogle
- Sam Hollifield
- Sana Elyas
- Sergey Smolentsev
- Steve Bullock
- Subhabrata Saha
- Thomas Butcher
- Thomas R Muth
- Tim Graening Seibert
- Tomas Grejtak
- Tyler Gerczak
- Ugur Mertyurek
- Vandana Rallabandi
- Vishaldeep Sharma
- Vittorio Badalassi
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Xianhui Zhao
- Yiyu Wang

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.