Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Diana E Hun
- Philip Boudreaux
- Som Shrestha
- Tomonori Saito
- Bryan Maldonado Puente
- Hongbin Sun
- Mahabir Bhandari
- Nolan Hayes
- Prashant Jain
- Venugopal K Varma
- Zoriana Demchuk
- Achutha Tamraparni
- Adam Aaron
- Catalin Gainaru
- Charles D Ottinger
- Easwaran Krishnan
- Gina Accawi
- Gurneesh Jatana
- Ian Greenquist
- Ilias Belharouak
- James Manley
- Jamieson Brechtl
- Joe Rendall
- Karen Cortes Guzman
- Kashif Nawaz
- Kuma Sumathipala
- Mark M Root
- Mengjia Tang
- Muneeshwaran Murugan
- Natasha Ghezawi
- Nate See
- Nithin Panicker
- Peter Wang
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Ruhul Amin
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Singanallur Venkatakrishnan
- Stephen M Killough
- Vishaldeep Sharma
- Vittorio Badalassi
- Zhenglai Shen

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

Estimates based on the U.S. Department of Energy (DOE) test procedure for water heaters indicate that the equivalent of 350 billion kWh worth of hot water is discarded annually through drains, and a large portion of this energy is, in fact, recoverable.

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

The traditional window installation process involves many steps. These are becoming even more complex with newer construction requirements such as installation of windows over exterior continuous insulation walls.

Recent advances in magnetic fusion (tokamak) technology have attracted billions of dollars of investments in startups from venture capitals and corporations to develop devices demonstrating net energy gain in a self-heated burning plasma, such as SPARC (under construction) and