Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Diana E Hun
- Philip Boudreaux
- Som Shrestha
- Tomonori Saito
- Bryan Maldonado Puente
- Mahabir Bhandari
- Nolan Hayes
- Venugopal K Varma
- Vincent Paquit
- Zoriana Demchuk
- Achutha Tamraparni
- Adam Aaron
- Akash Jag Prasad
- Andrew F May
- Ben Garrison
- Brad Johnson
- Calen Kimmell
- Canhai Lai
- Catalin Gainaru
- Charles D Ottinger
- Charlie Cook
- Christopher Hershey
- Chris Tyler
- Clay Leach
- Costas Tsouris
- Craig Blue
- Daniel Rasmussen
- Gina Accawi
- Gurneesh Jatana
- Hsin Wang
- James Haley
- James Klett
- James Parks II
- Jaydeep Karandikar
- John Lindahl
- Karen Cortes Guzman
- Kuma Sumathipala
- Mark M Root
- Mengjia Tang
- Mike Zach
- Natasha Ghezawi
- Nedim Cinbiz
- Peter Wang
- Ryan Dehoff
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Singanallur Venkatakrishnan
- Stephen M Killough
- Tony Beard
- Vladimir Orlyanchik
- Zackary Snow
- Zhenglai Shen

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

Sensing of additive manufacturing processes promises to facilitate detailed quality inspection at scales that have seldom been seen in traditional manufacturing processes.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

The traditional window installation process involves many steps. These are becoming even more complex with newer construction requirements such as installation of windows over exterior continuous insulation walls.

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.