Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Fusion and Fission Energy and Science Directorate (21)
Researcher
- Brian Post
- Chris Tyler
- Diana E Hun
- Peter Wang
- Justin West
- Philip Boudreaux
- Ritin Mathews
- Som Shrestha
- Andrzej Nycz
- Blane Fillingim
- Chris Masuo
- Peeyush Nandwana
- Sudarsanam Babu
- Thomas Feldhausen
- Tomonori Saito
- Venugopal K Varma
- Adam Stevens
- Ahmed Hassen
- Bryan Maldonado Puente
- David Olvera Trejo
- Hongbin Sun
- J.R. R Matheson
- Jaydeep Karandikar
- Joshua Vaughan
- Lauren Heinrich
- Mahabir Bhandari
- Michael Kirka
- Nolan Hayes
- Prashant Jain
- Rangasayee Kannan
- Ryan Dehoff
- Scott Smith
- Singanallur Venkatakrishnan
- William Carter
- Yousub Lee
- Zoriana Demchuk
- Achutha Tamraparni
- Adam Aaron
- Akash Jag Prasad
- Alexander I Wiechert
- Alex Roschli
- Amir K Ziabari
- Amit Shyam
- Amy Elliott
- Andrew F May
- Ben Garrison
- Benjamin Manard
- Beth L Armstrong
- Brad Johnson
- Brandon A Wilson
- Brian Gibson
- Calen Kimmell
- Callie Goetz
- Cameron Adkins
- Catalin Gainaru
- Charles D Ottinger
- Charles F Weber
- Christopher Fancher
- Christopher Hobbs
- Christopher Ledford
- Corson Cramer
- Costas Tsouris
- Craig Blue
- Eddie Lopez Honorato
- Emma Betters
- Fred List III
- Gina Accawi
- Gordon Robertson
- Govindarajan Muralidharan
- Greg Corson
- Gurneesh Jatana
- Hsin Wang
- Ian Greenquist
- Ilias Belharouak
- Isaac Sikkema
- Isha Bhandari
- James Klett
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- Joanna Mcfarlane
- John Lindahl
- John Potter
- Jonathan Willocks
- Joseph Olatt
- Josh B Harbin
- Karen Cortes Guzman
- Keith Carver
- Kuma Sumathipala
- Kunal Mondal
- Liam White
- Luke Meyer
- Mahim Mathur
- Mark M Root
- Matt Kurley III
- Matt Vick
- Mengjia Tang
- Michael Borish
- Mike Zach
- Mingyan Li
- Natasha Ghezawi
- Nate See
- N Dianne Ezell
- Nedim Cinbiz
- Nithin Panicker
- Oscar Martinez
- Philip Bingham
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Richard Howard
- Rodney D Hunt
- Roger G Miller
- Rose Montgomery
- Ruhul Amin
- Ryan Heldt
- Sam Hollifield
- Sarah Graham
- Sergey Smolentsev
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Stephen M Killough
- Steve Bullock
- Steven Guzorek
- Steven J Zinkle
- Thomas Butcher
- Thomas R Muth
- Tony L Schmitz
- Trevor Aguirre
- Tyler Gerczak
- Ugur Mertyurek
- Vandana Rallabandi
- Vincent Paquit
- Vishaldeep Sharma
- Vittorio Badalassi
- Vladimir Orlyanchik
- Vlastimil Kunc
- William Peter
- Yanli Wang
- Ying Yang
- Yukinori Yamamoto
- Yutai Kato
- Zhenglai Shen

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.