Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Neutron Sciences Directorate (11)
Researcher
- Diana E Hun
- Philip Boudreaux
- Som Shrestha
- Tomonori Saito
- Andrzej Nycz
- Bryan Maldonado Puente
- Chris Masuo
- Luke Meyer
- Mahabir Bhandari
- Nolan Hayes
- Peter Wang
- Venugopal K Varma
- William Carter
- Zoriana Demchuk
- Achutha Tamraparni
- Adam Aaron
- Alexander I Kolesnikov
- Alexei P Sokolov
- Alex Walters
- Andrew F May
- Bekki Mills
- Ben Garrison
- Brad Johnson
- Bruce Hannan
- Catalin Gainaru
- Charles D Ottinger
- Charlie Cook
- Christopher Hershey
- Craig Blue
- Daniel Rasmussen
- Dave Willis
- Gina Accawi
- Gurneesh Jatana
- Hsin Wang
- James Klett
- John Lindahl
- John Wenzel
- Joshua Vaughan
- Karen Cortes Guzman
- Keju An
- Kuma Sumathipala
- Loren L Funk
- Luke Chapman
- Mark Loguillo
- Mark M Root
- Matthew B Stone
- Mengjia Tang
- Mike Zach
- Natasha Ghezawi
- Nedim Cinbiz
- Polad Shikhaliev
- Shannon M Mahurin
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Singanallur Venkatakrishnan
- Stephen M Killough
- Sydney Murray III
- Tao Hong
- Theodore Visscher
- Tony Beard
- Vasilis Tzoganis
- Vasiliy Morozov
- Victor Fanelli
- Vladislav N Sedov
- Yacouba Diawara
- Yun Liu
- Zhenglai Shen

We presented a novel apparatus and method for laser beam position detection and pointing stabilization using analog position-sensitive diodes (PSDs).

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

Neutron scattering experiments cover a large temperature range in which experimenters want to test their samples.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

Neutron beams are used around the world to study materials for various purposes.

The traditional window installation process involves many steps. These are becoming even more complex with newer construction requirements such as installation of windows over exterior continuous insulation walls.