Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Brian Post
- Peter Wang
- Michael Kirka
- Peeyush Nandwana
- Andrzej Nycz
- Blane Fillingim
- Bo Shen
- Chris Masuo
- Praveen Cheekatamarla
- Rangasayee Kannan
- Ryan Dehoff
- Sudarsanam Babu
- Thomas Feldhausen
- Vishaldeep Sharma
- Adam Stevens
- Ahmed Hassen
- Christopher Ledford
- J.R. R Matheson
- James Manley
- Joshua Vaughan
- Kyle Gluesenkamp
- Lauren Heinrich
- Yousub Lee
- Alex Roschli
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- Beth L Armstrong
- Brian Gibson
- Cameron Adkins
- Christopher Fancher
- Chris Tyler
- Corson Cramer
- Craig Blue
- David Olvera Trejo
- Easwaran Krishnan
- Fred List III
- Gordon Robertson
- Hongbin Sun
- Isha Bhandari
- James Klett
- Jamieson Brechtl
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- Joe Rendall
- John Lindahl
- John Potter
- Kashif Nawaz
- Keith Carver
- Liam White
- Luke Meyer
- Melanie Moses-DeBusk Debusk
- Michael Borish
- Muneeshwaran Murugan
- Patxi Fernandez-Zelaia
- Philip Bingham
- Richard Howard
- Ritin Mathews
- Roger G Miller
- Sarah Graham
- Scott Smith
- Singanallur Venkatakrishnan
- Steve Bullock
- Steven Guzorek
- Thomas Butcher
- Trevor Aguirre
- Vincent Paquit
- Vlastimil Kunc
- William Carter
- William Peter
- Yan-Ru Lin
- Yifeng Hu
- Ying Yang
- Yukinori Yamamoto

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

This invention aims to develop a new feature for a heat pump water heater having a forced flow condenser, coupled with a mixing valve, and a new feature to maximize the first hour rating and provide quick response to hot water demand, comparable to a typical gas water heater.&

Develop an innovative refrigerator having a thermoelectric cooler cascaded with a regular refrigerator compression system. the TE cooler dedicatedly controls the temperature in a freezer compartment.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

Estimates based on the U.S. Department of Energy (DOE) test procedure for water heaters indicate that the equivalent of 350 billion kWh worth of hot water is discarded annually through drains, and a large portion of this energy is, in fact, recoverable.

A valve solution that prevents cross contamination while allowing for blocking multiple channels at once using only one actuator.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.