Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Neutron Sciences Directorate (11)
Researcher
- Brian Post
- Peter Wang
- Andrzej Nycz
- Chris Masuo
- Blane Fillingim
- Sudarsanam Babu
- Thomas Feldhausen
- Ahmed Hassen
- J.R. R Matheson
- Joshua Vaughan
- Lauren Heinrich
- Luke Meyer
- Peeyush Nandwana
- William Carter
- Yousub Lee
- Adam Stevens
- Alexander I Kolesnikov
- Alexander I Wiechert
- Alexei P Sokolov
- Alex Roschli
- Alex Walters
- Amit Shyam
- Bekki Mills
- Benjamin Manard
- Brian Gibson
- Bruce Hannan
- Cameron Adkins
- Charles F Weber
- Christopher Fancher
- Chris Tyler
- Costas Tsouris
- Craig Blue
- Dave Willis
- David Olvera Trejo
- Gordon Robertson
- Govindarajan Muralidharan
- Isaac Sikkema
- Isha Bhandari
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- Joanna Mcfarlane
- John Lindahl
- John Potter
- John Wenzel
- Jonathan Willocks
- Joseph Olatt
- Keju An
- Kunal Mondal
- Liam White
- Loren L Funk
- Luke Chapman
- Mahim Mathur
- Mark Loguillo
- Matthew B Stone
- Matt Vick
- Michael Borish
- Mingyan Li
- Oscar Martinez
- Polad Shikhaliev
- Rangasayee Kannan
- Ritin Mathews
- Roger G Miller
- Rose Montgomery
- Ryan Dehoff
- Sam Hollifield
- Sarah Graham
- Scott Smith
- Shannon M Mahurin
- Steven Guzorek
- Sydney Murray III
- Tao Hong
- Theodore Visscher
- Thomas R Muth
- Tomonori Saito
- Vandana Rallabandi
- Vasilis Tzoganis
- Vasiliy Morozov
- Venugopal K Varma
- Victor Fanelli
- Vladislav N Sedov
- Vlastimil Kunc
- William Peter
- Yacouba Diawara
- Yukinori Yamamoto
- Yun Liu

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

We presented a novel apparatus and method for laser beam position detection and pointing stabilization using analog position-sensitive diodes (PSDs).

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

Neutron scattering experiments cover a large temperature range in which experimenters want to test their samples.

A valve solution that prevents cross contamination while allowing for blocking multiple channels at once using only one actuator.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.

Neutron beams are used around the world to study materials for various purposes.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.