Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Fusion and Fission Energy and Science Directorate (21)
- (-) National Security Sciences Directorate (17)
Researcher
- Ali Passian
- Joseph Chapman
- Nicholas Peters
- Sam Hollifield
- Venugopal K Varma
- Chad Steed
- Hongbin Sun
- Hsuan-Hao Lu
- Joseph Lukens
- Junghoon Chae
- Mahabir Bhandari
- Mingyan Li
- Muneer Alshowkan
- Prashant Jain
- Travis Humble
- Aaron Myers
- Aaron Werth
- Adam Aaron
- Alexander I Wiechert
- Andrew F May
- Anees Alnajjar
- Ben Garrison
- Benjamin Manard
- Brad Johnson
- Brandon A Wilson
- Brian Weber
- Brian Williams
- Callie Goetz
- Charles D Ottinger
- Charles F Weber
- Charlie Cook
- Christopher Hershey
- Christopher Hobbs
- Claire Marvinney
- Costas Tsouris
- Craig Blue
- Daniel Rasmussen
- Derek Dwyer
- Eddie Lopez Honorato
- Emilio Piesciorovsky
- Eve Tsybina
- Fred List III
- Gary Hahn
- Govindarajan Muralidharan
- Harper Jordan
- Hsin Wang
- Ian Greenquist
- Ilias Belharouak
- Isaac Sikkema
- James Klett
- Jason Jarnagin
- Joanna Mcfarlane
- Joel Asiamah
- Joel Dawson
- John Lindahl
- Jonathan Willocks
- Joseph Olatt
- Justin Cazares
- Keith Carver
- Kevin Spakes
- Kunal Mondal
- Lilian V Swann
- Louise G Evans
- Luke Koch
- Mahim Mathur
- Mariam Kiran
- Mark Provo II
- Mary A Adkisson
- Matt Kurley III
- Matt Larson
- Matt Vick
- Mengdawn Cheng
- Mike Zach
- Nance Ericson
- Nate See
- N Dianne Ezell
- Nedim Cinbiz
- Nithin Panicker
- Oscar Martinez
- Paula Cable-Dunlap
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Raymond Borges Hink
- Richard Howard
- Richard L. Reed
- Rob Root
- Rodney D Hunt
- Rose Montgomery
- Ruhul Amin
- Ryan Heldt
- Samudra Dasgupta
- Sergey Smolentsev
- Srikanth Yoginath
- Steven J Zinkle
- Thomas Butcher
- Thomas R Muth
- T Oesch
- Tony Beard
- Tyler Gerczak
- Ugur Mertyurek
- Vandana Rallabandi
- Varisara Tansakul
- Vishaldeep Sharma
- Viswadeep Lebakula
- Vittorio Badalassi
- Yanli Wang
- Yarom Polsky
- Ying Yang
- Yutai Kato

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.