Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Adam M Guss
- Ali Passian
- Venugopal K Varma
- Andrzej Nycz
- Josh Michener
- Kuntal De
- Mahabir Bhandari
- Udaya C Kalluri
- Xiaohan Yang
- Adam Aaron
- Alex Walters
- Austin Carroll
- Biruk A Feyissa
- Carrie Eckert
- Charles D Ottinger
- Chris Masuo
- Claire Marvinney
- Clay Leach
- Debjani Pal
- Gerald Tuskan
- Govindarajan Muralidharan
- Harper Jordan
- Ilenne Del Valle Kessra
- Isaiah Dishner
- Jay D Huenemann
- Jeff Foster
- Joanna Tannous
- Joel Asiamah
- Joel Dawson
- John F Cahill
- Kyle Davis
- Liangyu Qian
- Nance Ericson
- Paul Abraham
- Rose Montgomery
- Serena Chen
- Sergey Smolentsev
- Srikanth Yoginath
- Steven J Zinkle
- Thomas R Muth
- Varisara Tansakul
- Vilmos Kertesz
- Vincent Paquit
- Yang Liu
- Yanli Wang
- Ying Yang
- Yutai Kato

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

This technology identifies enzymatic routes to synthesize amide oligomers with defined sequence to improve polymerization of existing materials or enable polymerization of new materials. Polymers are generally composed of one (e.g. Nylon 6) or two (e.g.

The technologies described provides for the upcycling of mixed plastics to muonic acid and 3-hydroxyacids.