Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Singanallur Venkatakrishnan
- Venugopal K Varma
- Amir K Ziabari
- Mahabir Bhandari
- Philip Bingham
- Ryan Dehoff
- Vincent Paquit
- Adam Aaron
- Alexander I Wiechert
- Benjamin Manard
- Charles D Ottinger
- Charles F Weber
- Costas Tsouris
- Diana E Hun
- Gina Accawi
- Govindarajan Muralidharan
- Gurneesh Jatana
- Joanna Mcfarlane
- Jonathan Willocks
- Mark M Root
- Matt Vick
- Michael Kirka
- Obaid Rahman
- Philip Boudreaux
- Rose Montgomery
- Sergey Smolentsev
- Steven J Zinkle
- Thomas R Muth
- Vandana Rallabandi
- Yanli Wang
- Ying Yang
- Yutai Kato

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

Fusion reactors need efficient systems to create tritium fuel and handle intense heat and radiation. Traditional liquid metal systems face challenges like high pressure losses and material breakdown in strong magnetic fields.

The traditional window installation process involves many steps. These are becoming even more complex with newer construction requirements such as installation of windows over exterior continuous insulation walls.

The interface gasket for building envelope is designed to enhance the installation of windows and other objects into building openings.

Simurgh revolutionizes industrial CT imaging with AI, enhancing speed and accuracy in nondestructive testing for complex parts, reducing costs.

The need for accurate temperature measurement in critical environments such as nuclear reactors is paramount for safety and efficiency.