Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate
(23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ilias Belharouak
- Singanallur Venkatakrishnan
- Alexey Serov
- Ali Abouimrane
- Amir K Ziabari
- Diana E Hun
- Jaswinder Sharma
- Marm Dixit
- Philip Bingham
- Philip Boudreaux
- Ruhul Amin
- Ryan Dehoff
- Stephen M Killough
- Vincent Paquit
- Xiang Lyu
- Amit K Naskar
- Ben LaRiviere
- Beth L Armstrong
- Bryan Maldonado Puente
- Corey Cooke
- David L Wood III
- Gabriel Veith
- Georgios Polyzos
- Gerald Tuskan
- Gina Accawi
- Gurneesh Jatana
- Holly Humphrey
- Hongbin Sun
- Ilenne Del Valle Kessra
- James Szybist
- Jonathan Willocks
- Junbin Choi
- Khryslyn G Araño
- Logan Kearney
- Lu Yu
- Mark M Root
- Meghan Lamm
- Michael Kirka
- Michael Toomey
- Michelle Lehmann
- Nance Ericson
- Nihal Kanbargi
- Nolan Hayes
- Obaid Rahman
- Paul Abraham
- Paul Groth
- Peter Wang
- Pradeep Ramuhalli
- Ritu Sahore
- Ryan Kerekes
- Sally Ghanem
- Todd Toops
- Vilmos Kertesz
- Xiaohan Yang
- Yang Liu
- Yaocai Bai
- Zhijia Du

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

ORNL has developed a new hybrid membrane to improve electrochemical stability in next-generation sodium metal anodes.

This invention utilizes new techniques in machine learning to accelerate the training of ML-based communication receivers.