Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Vivek Sujan
- Benjamin Manard
- Lawrence {Larry} M Anovitz
- Omer Onar
- Adam Siekmann
- Cyril Thompson
- Erdem Asa
- Subho Mukherjee
- Alexander I Wiechert
- Andrew G Stack
- Charles F Weber
- Costas Tsouris
- Hyeonsup Lim
- Isabelle Snyder
- Joanna Mcfarlane
- Jonathan Willocks
- Juliane Weber
- Matt Vick
- Peng Yang
- Sai Krishna Reddy Adapa
- Shajjad Chowdhury
- Vandana Rallabandi

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

The growing demand for electric vehicles (EVs) has necessitated significant advancements in EV charging technologies to ensure efficient and reliable operation.

The growing demand for renewable energy sources has propelled the development of advanced power conversion systems, particularly in applications involving fuel cells.

Mineral looping is a promising method for direct air capture of CO2. However, reduction of sorbent reactivity after each loop is likely to be significant problems for mineral looping by MgO.

This invention presents a multiport converter (MPC) based power supply to charge the 12 V and 24 V auxiliary batteries in heavy duty (HD) fuel cell (FC) electric vehicle (EV) power train.

This invention presents an integrated strategy to reduce end-user electricity costs and grid carbon emissions by efficiently utilizing Distributed Energy Resources (DER) and grid-scale electrical energy storage systems, such as batteries.

No readily available public data exists for vehicle class and weight information that covers the entire U.S. highway network. The Travel Monitoring Analysis System, managed by the Federal Highway Administration covers only less than 1% of the US highway network.