Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Lawrence {Larry} M Anovitz
- Alexander I Wiechert
- Costas Tsouris
- Andrew G Stack
- Benjamin Manard
- Charles F Weber
- Debangshu Mukherjee
- Govindarajan Muralidharan
- Gs Jung
- Gyoung Gug Jang
- Isaac Sikkema
- Joanna Mcfarlane
- Jonathan Willocks
- Joseph Olatt
- Juliane Weber
- Kunal Mondal
- Mahim Mathur
- Matt Vick
- Md Inzamam Ul Haque
- Mingyan Li
- Olga S Ovchinnikova
- Oscar Martinez
- Peng Yang
- Radu Custelcean
- Rose Montgomery
- Sai Krishna Reddy Adapa
- Sam Hollifield
- Thomas R Muth
- Vandana Rallabandi
- Venugopal K Varma

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

Mineral looping is a promising method for direct air capture of CO2. However, reduction of sorbent reactivity after each loop is likely to be significant problems for mineral looping by MgO.

Real-time tracking and monitoring of radioactive/nuclear materials during transportation is a critical need to ensure safety and security. Current technologies rely on simple tagging, using sensors attached to transport containers, but they have limitations.

An efficient, eco-friendly metal extraction using ultrasonic leaching, ideal for lithium and magnesium recovery from minerals and waste.

This innovative approach combines optical and spectral imaging data via machine learning to accurately predict cancer labels directly from tissue images.

The need for accurate temperature measurement in critical environments such as nuclear reactors is paramount for safety and efficiency.