Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Lawrence {Larry} M Anovitz
- Blane Fillingim
- Brian Post
- Lauren Heinrich
- Peeyush Nandwana
- Sudarsanam Babu
- Thomas Feldhausen
- Yaosuo Xue
- Yousub Lee
- Andrew G Stack
- Fei Wang
- Juliane Weber
- Peng Yang
- Phani Ratna Vanamali Marthi
- Rafal Wojda
- Ramanan Sankaran
- Sai Krishna Reddy Adapa
- Sreenivasa Jaldanki
- Suman Debnath
- Sunil Subedi
- Vimal Ramanuj
- Wenjun Ge
- Yonghao Gui

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

Measurements of grid voltage and current are essential for the optimal operation of the grid protection and control (P&C) systems.

Mineral looping is a promising method for direct air capture of CO2. However, reduction of sorbent reactivity after each loop is likely to be significant problems for mineral looping by MgO.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

Ceramic matrix composites are used in several industries, such as aerospace, for lightweight, high quality and high strength materials. But producing them is time consuming and often low quality.

Multi-terminal DC (MTdc) systems based on high-voltage DC (HVDC) transmission technology is an upcoming concept. In such systems, either asymmetric monopole or bi-pole systems are generally employed. Such systems are not suitable for easy expansion.

Stability performance of interconnected power grids plays crucial roles on their secure operation to prevent cascading failure and blackout.

Technologies directed to a multi-port autonomous reconfigurable solar power plant are described.

An efficient, eco-friendly metal extraction using ultrasonic leaching, ideal for lithium and magnesium recovery from minerals and waste.