Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ilias Belharouak
- Jaswinder Sharma
- Lawrence {Larry} M Anovitz
- Alexey Serov
- Ali Abouimrane
- Beth L Armstrong
- Georgios Polyzos
- Marm Dixit
- Ruhul Amin
- Sergiy Kalnaus
- Xiang Lyu
- Amit K Naskar
- Andrew G Stack
- Ben LaRiviere
- David L Wood III
- Gabriel Veith
- Holly Humphrey
- Hongbin Sun
- James Szybist
- Jonathan Willocks
- Juliane Weber
- Junbin Choi
- Khryslyn G Araño
- Logan Kearney
- Lu Yu
- Meghan Lamm
- Michael Toomey
- Michelle Lehmann
- Nance Ericson
- Nancy Dudney
- Nihal Kanbargi
- Paul Groth
- Peng Yang
- Pradeep Ramuhalli
- Ritu Sahore
- Sai Krishna Reddy Adapa
- Todd Toops
- Yaocai Bai
- Zhijia Du

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

Mineral looping is a promising method for direct air capture of CO2. However, reduction of sorbent reactivity after each loop is likely to be significant problems for mineral looping by MgO.

The co-processing of cathode and composite electrolyte for solid state polymer batteries has been developed. A traditional uncalendared cathode of e.g.

ORNL has developed a new hybrid membrane to improve electrochemical stability in next-generation sodium metal anodes.