Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Sheng Dai
- Ilias Belharouak
- Parans Paranthaman
- Bishnu Prasad Thapaliya
- Zhenzhen Yang
- Craig A Bridges
- Shannon M Mahurin
- Ali Abouimrane
- Edgar Lara-Curzio
- Hongbin Sun
- Ilja Popovs
- Li-Qi Qiu
- Prashant Jain
- Ruhul Amin
- Saurabh Prakash Pethe
- Tolga Aytug
- Uday Vaidya
- Ahmed Hassen
- Alexei P Sokolov
- Anees Alnajjar
- Ben Lamm
- Beth L Armstrong
- Bruce Moyer
- David L Wood III
- Eric Wolfe
- Frederic Vautard
- Georgios Polyzos
- Ian Greenquist
- Jaswinder Sharma
- Jayanthi Kumar
- Junbin Choi
- Kaustubh Mungale
- Lu Yu
- Marm Dixit
- Meghan Lamm
- Nageswara Rao
- Nate See
- Nidia Gallego
- Nithin Panicker
- Phillip Halstenberg
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Santa Jansone-Popova
- Shajjad Chowdhury
- Subhamay Pramanik
- Tao Hong
- Tomonori Saito
- Vishaldeep Sharma
- Vittorio Badalassi
- Vlastimil Kunc
- Yaocai Bai
- Zhijia Du

A novel strategy was developed to solve the limitations of the current sorbent systems in CO2 chemisorption in terms of energy consumption in CO2 release and improved CO2 uptake capacity.

This invention introduces a novel sintering approach to produce hard carbon with a finely tuned microstructure, derived from biomass and plastic waste.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

The increasing demand for high-purity lanthanides, essential for advanced technologies such as electronics, renewable energy, and medical applications, presents a significant challenge due to their similar chemical properties.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

Electrochemistry synthesis and characterization testing typically occurs manually at a research facility.

A bonded carbon fiber monolith was made using a coal-based pitch precursor without a binder.

To develop efficient and stable liquid sorbents towards carbon capture, a series of functionalized ionic liquids were synthesized and studied in CO2 chemisorption via O–C bond formation.