Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Sheng Dai
- Parans Paranthaman
- Bishnu Prasad Thapaliya
- Zhenzhen Yang
- Craig A Bridges
- Shannon M Mahurin
- Adam Willoughby
- Edgar Lara-Curzio
- Ilja Popovs
- Li-Qi Qiu
- Rishi Pillai
- Saurabh Prakash Pethe
- Tolga Aytug
- Uday Vaidya
- Ahmed Hassen
- Alexei P Sokolov
- Anees Alnajjar
- Ben Lamm
- Beth L Armstrong
- Brandon Johnston
- Bruce A Pint
- Bruce Moyer
- Charles Hawkins
- Eric Wolfe
- Frederic Vautard
- Jayanthi Kumar
- Jiheon Jun
- Kaustubh Mungale
- Marie Romedenne
- Meghan Lamm
- Nageswara Rao
- Nidia Gallego
- Phillip Halstenberg
- Priyanshi Agrawal
- Santa Jansone-Popova
- Shajjad Chowdhury
- Subhamay Pramanik
- Tao Hong
- Tomonori Saito
- Vlastimil Kunc
- Yong Chae Lim
- Zhili Feng

A novel strategy was developed to solve the limitations of the current sorbent systems in CO2 chemisorption in terms of energy consumption in CO2 release and improved CO2 uptake capacity.

This invention introduces a novel sintering approach to produce hard carbon with a finely tuned microstructure, derived from biomass and plastic waste.

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

The increasing demand for high-purity lanthanides, essential for advanced technologies such as electronics, renewable energy, and medical applications, presents a significant challenge due to their similar chemical properties.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

Electrochemistry synthesis and characterization testing typically occurs manually at a research facility.

A bonded carbon fiber monolith was made using a coal-based pitch precursor without a binder.

To develop efficient and stable liquid sorbents towards carbon capture, a series of functionalized ionic liquids were synthesized and studied in CO2 chemisorption via O–C bond formation.

New demands in electric vehicles have resulted in design changes for the power electronic components such as the capacitor to incur lower volume, higher operating temperatures, and dielectric properties (high dielectric permittivity and high electrical breakdown strengths).