Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Physical Sciences Directorate
(128)
- User Facilities (27)
- (-) Neutron Sciences Directorate (11)
Researcher
- Sheng Dai
- Parans Paranthaman
- Bishnu Prasad Thapaliya
- Zhenzhen Yang
- Craig A Bridges
- Shannon M Mahurin
- Andrzej Nycz
- Chris Masuo
- Edgar Lara-Curzio
- Ilja Popovs
- Li-Qi Qiu
- Luke Meyer
- Saurabh Prakash Pethe
- Tolga Aytug
- Uday Vaidya
- Vincent Paquit
- William Carter
- Ahmed Hassen
- Akash Jag Prasad
- Alexander I Kolesnikov
- Alexei P Sokolov
- Alex Walters
- Anees Alnajjar
- Bekki Mills
- Ben Lamm
- Beth L Armstrong
- Bruce Hannan
- Bruce Moyer
- Calen Kimmell
- Canhai Lai
- Chris Tyler
- Clay Leach
- Costas Tsouris
- Dave Willis
- Eric Wolfe
- Frederic Vautard
- James Haley
- James Parks II
- Jayanthi Kumar
- Jaydeep Karandikar
- John Wenzel
- Joshua Vaughan
- Kaustubh Mungale
- Keju An
- Loren L Funk
- Luke Chapman
- Mark Loguillo
- Matthew B Stone
- Meghan Lamm
- Nageswara Rao
- Nidia Gallego
- Peter Wang
- Phillip Halstenberg
- Polad Shikhaliev
- Ryan Dehoff
- Santa Jansone-Popova
- Shajjad Chowdhury
- Subhamay Pramanik
- Sydney Murray III
- Tao Hong
- Theodore Visscher
- Tomonori Saito
- Vasilis Tzoganis
- Vasiliy Morozov
- Victor Fanelli
- Vladimir Orlyanchik
- Vladislav N Sedov
- Vlastimil Kunc
- Yacouba Diawara
- Yun Liu
- Zackary Snow

We presented a novel apparatus and method for laser beam position detection and pointing stabilization using analog position-sensitive diodes (PSDs).

A novel strategy was developed to solve the limitations of the current sorbent systems in CO2 chemisorption in terms of energy consumption in CO2 release and improved CO2 uptake capacity.

This invention introduces a novel sintering approach to produce hard carbon with a finely tuned microstructure, derived from biomass and plastic waste.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

The increasing demand for high-purity lanthanides, essential for advanced technologies such as electronics, renewable energy, and medical applications, presents a significant challenge due to their similar chemical properties.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

Neutron scattering experiments cover a large temperature range in which experimenters want to test their samples.

Electrochemistry synthesis and characterization testing typically occurs manually at a research facility.

Sensing of additive manufacturing processes promises to facilitate detailed quality inspection at scales that have seldom been seen in traditional manufacturing processes.