Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Tomonori Saito
- Anisur Rahman
- Jeff Foster
- Diana E Hun
- Mary Danielson
- Syed Islam
- Alexei P Sokolov
- Catalin Gainaru
- Hongbin Sun
- Michelle Lehmann
- Natasha Ghezawi
- Prashant Jain
- Ramesh Bhave
- Vera Bocharova
- Zoriana Demchuk
- Achutha Tamraparni
- Benjamin L Doughty
- Corson Cramer
- Glenn R Romanoski
- Govindarajan Muralidharan
- Ian Greenquist
- Ilias Belharouak
- Isaiah Dishner
- Josh Michener
- Karen Cortes Guzman
- Kuma Sumathipala
- Liangyu Qian
- Mengjia Tang
- Nate See
- Nick Galan
- Nick Gregorich
- Nithin Panicker
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Robert Sacci
- Rose Montgomery
- Ruhul Amin
- Santanu Roy
- Shailesh Dangwal
- Shannon M Mahurin
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Som Shrestha
- Tao Hong
- Thomas R Muth
- Uvinduni Premadasa
- Venugopal K Varma
- Vishaldeep Sharma
- Vittorio Badalassi

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

PET is used in many commercial products, but only a fraction is mechanically recycled, and even less is chemically recycled.

Developed a novel energy efficient, cost-effective, environmentally friendly process for separation of lithium from end-of-life lithium-ion batteries.

This work presents a novel method for upcycling polyethylene terephthalate (PET) waste into sustainable vitrimer materials. By combining bio-based crosslinkers with our PET-based macromonomer, we developed dynamically bonded plastics that are renewably sourced.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

This invention focuses on improving the ceramic yield of preceramic polymers by tuning the crosslinking process that occurs during vat photopolymerization (VP).

This invention introduces an innovative method for upcycling waste polyalkenamers, such as polybutadiene and acrylonitrile butadiene styrene, into high-performance materials through ring-opening metathesis polymerization (ROMP).

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.