Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ali Passian
- Joseph Chapman
- Nicholas Peters
- Adam Willoughby
- Alexey Serov
- Hsuan-Hao Lu
- Jaswinder Sharma
- Joseph Lukens
- Muneer Alshowkan
- Rishi Pillai
- Xiang Lyu
- Amit K Naskar
- Anees Alnajjar
- Beth L Armstrong
- Brandon Johnston
- Brian Williams
- Bruce A Pint
- Charles Hawkins
- Claire Marvinney
- Gabriel Veith
- Georgios Polyzos
- Harper Jordan
- Holly Humphrey
- James Szybist
- Jiheon Jun
- Joel Asiamah
- Joel Dawson
- Jonathan Willocks
- Junbin Choi
- Khryslyn G Araño
- Logan Kearney
- Mariam Kiran
- Marie Romedenne
- Marm Dixit
- Meghan Lamm
- Michael Toomey
- Michelle Lehmann
- Nance Ericson
- Nihal Kanbargi
- Priyanshi Agrawal
- Ritu Sahore
- Srikanth Yoginath
- Todd Toops
- Varisara Tansakul
- Yong Chae Lim
- Zhili Feng

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.