Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Peeyush Nandwana
- Ryan Dehoff
- Singanallur Venkatakrishnan
- Amir K Ziabari
- Amit Shyam
- Blane Fillingim
- Brian Post
- Edgar Lara-Curzio
- Lauren Heinrich
- Philip Bingham
- Rangasayee Kannan
- Steven J Zinkle
- Sudarsanam Babu
- Thomas Feldhausen
- Vincent Paquit
- Yanli Wang
- Ying Yang
- Yousub Lee
- Yutai Kato
- Adam Willoughby
- Alex Plotkowski
- Andres Marquez Rossy
- Bishnu Prasad Thapaliya
- Brandon Johnston
- Bruce A Pint
- Bryan Lim
- Charles Hawkins
- Christopher Fancher
- Diana E Hun
- Eric Wolfe
- Frederic Vautard
- Gina Accawi
- Gordon Robertson
- Gurneesh Jatana
- Jay Reynolds
- Jeff Brookins
- Marie Romedenne
- Mark M Root
- Michael Kirka
- Nidia Gallego
- Obaid Rahman
- Peter Wang
- Philip Boudreaux
- Rishi Pillai
- Tim Graening Seibert
- Tomas Grejtak
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yiyu Wang

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

A bonded carbon fiber monolith was made using a coal-based pitch precursor without a binder.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.