Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Michael Kirka
- Rangasayee Kannan
- Ryan Dehoff
- Adam Stevens
- Beth L Armstrong
- Christopher Ledford
- Peeyush Nandwana
- Sergiy Kalnaus
- Alice Perrin
- Amir K Ziabari
- Brian Post
- Corson Cramer
- Fred List III
- Georgios Polyzos
- James Klett
- Jaswinder Sharma
- Keith Carver
- Nancy Dudney
- Patxi Fernandez-Zelaia
- Philip Bingham
- Richard Howard
- Roger G Miller
- Sarah Graham
- Singanallur Venkatakrishnan
- Steve Bullock
- Sudarsanam Babu
- Thomas Butcher
- Trevor Aguirre
- Vincent Paquit
- William Peter
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.
Red mud residue is an industrial waste product generated during the processing of bauxite ore to extract alumina for the steelmaking industry. Red mud is rich in minerals in bauxite like iron and aluminum oxide, but also heavy metals, including arsenic and mercury.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

The co-processing of cathode and composite electrolyte for solid state polymer batteries has been developed. A traditional uncalendared cathode of e.g.

This technology aims to provide and integrated and oxidation resistant cladding or coating onto carbon-based composites in seconds.

A diver-operated system brings safe and portable imaging to a new operating environment – underwater at depths up to 300 feet.