Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Neutron Sciences Directorate (11)
Researcher
- Costas Tsouris
- Andrew Sutton
- Michelle Kidder
- Radu Custelcean
- Gyoung Gug Jang
- Alexander I Wiechert
- Andrzej Nycz
- Chris Masuo
- Gs Jung
- Luke Meyer
- Michael Cordon
- Tomonori Saito
- William Carter
- Ajibola Lawal
- Alexander I Kolesnikov
- Alexei P Sokolov
- Alex Walters
- Bekki Mills
- Benjamin Manard
- Bruce Hannan
- Canhai Lai
- Charles F Weber
- Dave Willis
- Dhruba Deka
- Diana E Hun
- Easwaran Krishnan
- James Manley
- James Parks II
- Jamieson Brechtl
- Jeffrey Einkauf
- Joanna Mcfarlane
- Joe Rendall
- John Wenzel
- Jonathan Willocks
- Jong K Keum
- Joshua Vaughan
- Karen Cortes Guzman
- Kashif Nawaz
- Keju An
- Kuma Sumathipala
- Loren L Funk
- Luke Chapman
- Mark Loguillo
- Matthew B Stone
- Matt Vick
- Melanie Moses-DeBusk Debusk
- Mengjia Tang
- Mina Yoon
- Muneeshwaran Murugan
- Peter Wang
- Polad Shikhaliev
- Shannon M Mahurin
- Sreshtha Sinha Majumdar
- Sydney Murray III
- Tao Hong
- Theodore Visscher
- Vandana Rallabandi
- Vasilis Tzoganis
- Vasiliy Morozov
- Victor Fanelli
- Vladislav N Sedov
- Yacouba Diawara
- Yeonshil Park
- Yun Liu
- Zoriana Demchuk

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

We presented a novel apparatus and method for laser beam position detection and pointing stabilization using analog position-sensitive diodes (PSDs).

The technologies provides for regeneration of anion-exchange resin.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Monoterpenes conversion to C10 aromatics (60%) and C10 cycloalkanes (40%) in an inert environment, provides an established route for sustainable aviation fuel (SAF) blends sourced directly from biomass captured terpenes mixtures.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

Sugars (glucose and xylose) can be converted into dioxolanes which phase separate from water. These dioxolanes can be heterolytically cleaved which acts as a controlled dehydration reaction which results in ring closing of the subsequent structure to furans such as 5-hydr

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

Estimates based on the U.S. Department of Energy (DOE) test procedure for water heaters indicate that the equivalent of 350 billion kWh worth of hot water is discarded annually through drains, and a large portion of this energy is, in fact, recoverable.

The hybrid powder-encapsulated solvent over comes carbon capture challenges by providing a solution for easy handling of a non-toxic solid that is non-volatile and stable upon alternative energy regeneration methods.