Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ali Passian
- Joseph Chapman
- Nicholas Peters
- Andrzej Nycz
- Chris Masuo
- Hsuan-Hao Lu
- Joseph Lukens
- Luke Meyer
- Muneer Alshowkan
- William Carter
- Alex Walters
- Anees Alnajjar
- Brian Williams
- Bruce Hannan
- Claire Marvinney
- Harper Jordan
- Isaac Sikkema
- Joel Asiamah
- Joel Dawson
- Joseph Olatt
- Joshua Vaughan
- Kunal Mondal
- Loren L Funk
- Mahim Mathur
- Mariam Kiran
- Mingyan Li
- Nance Ericson
- Oscar Martinez
- Peter Wang
- Polad Shikhaliev
- Sam Hollifield
- Srikanth Yoginath
- Theodore Visscher
- Varisara Tansakul
- Vladislav N Sedov
- Yacouba Diawara

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.