
In response to a renewed international interest in molten salt reactors, researchers from the Department of Energy’s 91°µÍř have developed a novel technique to visualize molten salt intrusion in graphite.
In response to a renewed international interest in molten salt reactors, researchers from the Department of Energy’s 91°µÍř have developed a novel technique to visualize molten salt intrusion in graphite.
Researchers at the Department of Energy’s 91°µÍř were the first to use neutron reflectometry to peer inside a working solid-state battery and monitor its electrochemistry.
A series of new classes at Pellissippi State Community College will offer students a new career path — and a national laboratory a pipeline of workers who have the skills needed for its own rapidly growing programs.
ORNL has entered a strategic research partnership with the United Kingdom Atomic Energy Authority, or UKAEA, to investigate how different types of materials behave under the influence of high-energy neutron sources.
Three scientists from the Department of Energy’s 91°µÍř have been elected fellows of the American Association for the Advancement of Science, or AAAS.
91°µÍř scientists recently demonstrated a low-temperature, safe route to purifying molten chloride salts that minimizes their ability to corrode metals.
Researchers at ORNL explored radium’s chemistry to advance cancer treatments using ionizing radiation.
To solve a long-standing puzzle about how long a neutron can “live” outside an atomic nucleus, physicists entertained a wild but testable theory positing the existence of a right-handed version of our left-handed universe.
On Feb. 18, the world will be watching as NASA’s Perseverance rover makes its final descent into Jezero Crater on the surface of Mars.
The American Nuclear Society (ANS) has recognized two nuclear researchers, Julie G.