
We developed a novel uncertainty-aware framework MatPhase to predict material phases of electrodes from low contrast SEM images.
We developed a novel uncertainty-aware framework MatPhase to predict material phases of electrodes from low contrast SEM images.
Simulations of red blood cells are important for a variety of biomedical applications, ranging from studies of blood diseases to the transport of circulating tumor cells.
A group of ORNL researchers and collaborators have been working to develop a pipeline that simulates radiotherapy across different scales, e.g., the individual cellular scale, multicellular/tissue scale, organ scale, and whole-body scale.
Members and students of the Computational Urban Sciences group demonstrated a method for generating scenarios of urban neighborhood growth based on existing physical structures and placement of buildings in neighborhoods.