
Computational scientists and neutron structural biologists from 91°µÍø developed an integrated workflow using small-angle neutron scattering (SANS), atomistic molecular dynamics (MD) simulation, and an autoencoder-based deep learn
Computational scientists and neutron structural biologists from 91°µÍø developed an integrated workflow using small-angle neutron scattering (SANS), atomistic molecular dynamics (MD) simulation, and an autoencoder-based deep learn
In this work we focus on dynamics problems described by waves, i.e. by hyperbolic partial differential equations.
A research team from ORNL, Pacific Northwest National Laboratory, and Arizona State University has developed a novel method to detect out-of-distribution (OOD) samples in continual learning without forgetting the learned knowledge of preceding tasks.
ORNL researchers developed a novel nonlinear level set learning method to reduce dimensionality in high-dimensional function approximation.
The team conducted numerical studies to demonstrate the connection between the parameters of neural networks and the stochastic stability of DMMs.
Estimating complex, non-linear model states and parameters from uncertain systems of equations and noisy observation data with current filtering methods is a key challenge in mathematical modeling.
ORNL researchers developed a stochastic approximate gradient ascent method to reduce posterior uncertainty in Bayesian experimental design involving implicit models.
The researchers from ORNL have developed a new and faster algorithm for the graph all-pair shortest-path (APSP) problem.
A team of ORNL researchers has used the DCA++ application, a popular code for predicting the performance of quantum materials, to verify two performance-enhancing strategies.
Kokkos is a programming model and library for writing performance-portable code in C++.