91做厙

Skip to main content
SHARE
Publication

Performance Analysis of an Optimization Algorithm for Metamaterial Design on the Integrated High-Performance Computing and Qu...

by Seongmin Kim, Insaeng Suh
Publication Type
Journal
Journal Name
arXiv
Publication Date
Page Numbers
1 to 11
Volume
1

Optimizing metamaterials with complex geometries is a big challenge. Although an active learning algorithm, combining machine learning (ML), quantum computing, and optical simulation, has emerged as an efficient optimization tool, it still faces difficulties in optimizing complex structures that have potentially high performance. In this work, we comprehensively analyze the performance of an optimization algorithm for metamaterial design on the integrated HPC and quantum systems. We demonstrate significant time advantages through message-passing interface (MPI) parallelization on the high-performance computing (HPC) system showing approximately 54% faster ML tasks and 67 times faster optical simulation against serial workloads. Furthermore, we analyze the performance of a quantum algorithm designed for optimization, which runs with various quantum simulators on a local computer or HPC-quantum system. Results showcase ~24 times speedup when executing the optimization algorithm on the HPC-quantum hybrid system. This study paves a way to optimize complex metamaterials using the integrated HPC-quantum system.