Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities
(27)
Researcher
- Rama K Vasudevan
- Sergei V Kalinin
- Yongtao Liu
- Kevin M Roccapriore
- Kyle Kelley
- Maxim A Ziatdinov
- Sam Hollifield
- Chad Steed
- Junghoon Chae
- Mingyan Li
- Travis Humble
- Aaron Werth
- Ali Passian
- Anton Ievlev
- Arpan Biswas
- Bogdan Dryzhakov
- Brian Weber
- Christopher Rouleau
- Costas Tsouris
- Emilio Piesciorovsky
- Gary Hahn
- Gerd Duscher
- Gs Jung
- Gyoung Gug Jang
- Harper Jordan
- Ilia N Ivanov
- Isaac Sikkema
- Ivan Vlassiouk
- Jason Jarnagin
- Joel Asiamah
- Joel Dawson
- Jong K Keum
- Joseph Olatt
- Kevin Spakes
- Kunal Mondal
- Liam Collins
- Lilian V Swann
- Luke Koch
- Mahim Mathur
- Mahshid Ahmadi-Kalinina
- Mark Provo II
- Marti Checa Nualart
- Mary A Adkisson
- Mina Yoon
- Nance Ericson
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Oscar Martinez
- Radu Custelcean
- Raymond Borges Hink
- Rob Root
- Sai Mani Prudhvi Valleti
- Samudra Dasgupta
- Srikanth Yoginath
- Stephen Jesse
- Steven Randolph
- Sumner Harris
- T Oesch
- Utkarsh Pratiush
- Varisara Tansakul
- Yarom Polsky

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Scanning transmission electron microscopes are useful for a variety of applications. Atomic defects in materials are critical for areas such as quantum photonics, magnetic storage, and catalysis.

The QVis Quantum Device Circuit Optimization Module gives users the ability to map a circuit to a specific quantum devices based on the device specifications.

QVis is a visual analytics tool that helps uncover temporal and multivariate variations in noise properties of quantum devices.

A human-in-the-loop machine learning (hML) technology potentially enhances experimental workflows by integrating human expertise with AI automation.

This technology is a laser-based heating unit that offers rapid heating profiles on a research scale with minimal incidental heating of materials processing environments.

The scanning transmission electron microscope (STEM) provides unprecedented spatial resolution and is critical for many applications, primarily for imaging matter at the atomic and nanoscales and obtaining spectroscopic information at similar length scales.