Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- National Security Sciences Directorate
(17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Isotope Science and Enrichment Directorate (6)
Researcher
- Mike Zach
- Alexander I Wiechert
- Ali Passian
- Andrew F May
- Ben Garrison
- Benjamin Manard
- Brad Johnson
- Bruce Moyer
- Charles F Weber
- Charlie Cook
- Christopher Hershey
- Costas Tsouris
- Craig Blue
- Daniel Rasmussen
- Debjani Pal
- Derek Dwyer
- Harper Jordan
- Hsin Wang
- James Klett
- Jeffrey Einkauf
- Jennifer M Pyles
- Joanna Mcfarlane
- Joel Asiamah
- Joel Dawson
- John Lindahl
- Jonathan Willocks
- Justin Griswold
- Kuntal De
- Laetitia H Delmau
- Louise G Evans
- Luke Sadergaski
- Matt Vick
- Mengdawn Cheng
- Nance Ericson
- Nedim Cinbiz
- Padhraic L Mulligan
- Paula Cable-Dunlap
- Richard L. Reed
- Sandra Davern
- Srikanth Yoginath
- Tony Beard
- Vandana Rallabandi
- Varisara Tansakul

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

Pyrolysis evolved gas analysis – mass spectrometry (EGA-MS) and pyrolysis gas chromatography – MS (GC-MS) – are powerful analytical tools for polymer characterization.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

We have developed an aerosol sampling technique to enable collection of trace materials such as actinides in the atmosphere.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.

Biocompatible nanoparticles have been developed that can trap and retain therapeutic radionuclides and their byproducts at the cancer site. This is important to maximize the therapeutic effect of this treatment and minimize associated side effects.