Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Corson Cramer
- Steve Bullock
- Greg Larsen
- James Klett
- Trevor Aguirre
- Vlastimil Kunc
- Ahmed Hassen
- Alexander I Wiechert
- Benjamin Manard
- Beth L Armstrong
- Bruce Moyer
- Charles F Weber
- Charlie Cook
- Christopher Hershey
- Christopher Ledford
- Costas Tsouris
- Craig Blue
- Daniel Rasmussen
- David J Mitchell
- Debjani Pal
- Derek Dwyer
- Dustin Gilmer
- Jeffrey Einkauf
- Jennifer M Pyles
- Joanna Mcfarlane
- John Lindahl
- Jonathan Willocks
- Jordan Wright
- Justin Griswold
- Kuntal De
- Laetitia H Delmau
- Louise G Evans
- Luke Sadergaski
- Matt Vick
- Mengdawn Cheng
- Michael Kirka
- Mike Zach
- Nadim Hmeidat
- Padhraic L Mulligan
- Paula Cable-Dunlap
- Richard L. Reed
- Sana Elyas
- Sandra Davern
- Steven Guzorek
- Tomonori Saito
- Tony Beard
- Vandana Rallabandi

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

The technologies provide additively manufactured thermal protection system.

This invention focuses on improving the ceramic yield of preceramic polymers by tuning the crosslinking process that occurs during vat photopolymerization (VP).

Pyrolysis evolved gas analysis – mass spectrometry (EGA-MS) and pyrolysis gas chromatography – MS (GC-MS) – are powerful analytical tools for polymer characterization.

Using all polymer formulations, the PIP densification is improved almost 70% over traditional preceramic polymers and PIP material leading to cost and times saving for densifying ceramic composites made from powder or fibers.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

Fiberglass, semi-structural insulation for recycled glass fiber and using a low cost silicon with pultruded rods, either fiberglass and a low cost resin, polyester for pultruded rods. It will reduce the use of wood, which is flammable, and still be structural.

We have developed an aerosol sampling technique to enable collection of trace materials such as actinides in the atmosphere.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.