Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate
(17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Andrzej Nycz
- Chris Masuo
- Peter Wang
- Alex Walters
- Vincent Paquit
- Brian Gibson
- Clay Leach
- Joshua Vaughan
- Luke Meyer
- Udaya C Kalluri
- William Carter
- Aaron Werth
- Akash Jag Prasad
- Ali Passian
- Amit Shyam
- Calen Kimmell
- Canhai Lai
- Chelo Chavez
- Christopher Fancher
- Chris Tyler
- Costas Tsouris
- Emilio Piesciorovsky
- Gary Hahn
- Gordon Robertson
- Harper Jordan
- J.R. R Matheson
- James Haley
- James Parks II
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- Joel Asiamah
- Joel Dawson
- John Potter
- Nance Ericson
- Raymond Borges Hink
- Riley Wallace
- Ritin Mathews
- Ryan Dehoff
- Srikanth Yoginath
- Varisara Tansakul
- Vladimir Orlyanchik
- Xiaohan Yang
- Yarom Polsky
- Zackary Snow

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

Creating a framework (method) for bots (agents) to autonomously, in real time, dynamically divide and execute a complex manufacturing (or any suitable) task in a collaborative, parallel-sequential way without required human interaction.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.

Sensing of additive manufacturing processes promises to facilitate detailed quality inspection at scales that have seldom been seen in traditional manufacturing processes.

In additive printing that utilizes multiple robotic agents to build, each agent, or “arm”, is currently limited to a prescribed path determined by the user.

This invention discusses the methodology to calibrating a multi-robot system with an arbitrary number of agents to obtain single coordinate frame with high accuracy.

Gas metal arc welding (GMAW) wire arc additive manufacturing (WAAM) processes use inert shielding to protect the weld arc during material deposition, but do not protect the trailing bead, which can lead to weld issues varying from low finish quality to diminished material prop