Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Vivek Sujan
- Radu Custelcean
- Costas Tsouris
- Gyoung Gug Jang
- Jeffrey Einkauf
- Omer Onar
- Ying Yang
- Adam Siekmann
- Adam Willoughby
- Benjamin L Doughty
- Bruce A Pint
- Bruce Moyer
- Edgar Lara-Curzio
- Erdem Asa
- Gs Jung
- Nikki Thiele
- Rishi Pillai
- Santa Jansone-Popova
- Shajjad Chowdhury
- Steven J Zinkle
- Subho Mukherjee
- Yanli Wang
- Yutai Kato
- Alexander I Wiechert
- Alice Perrin
- Ben Lamm
- Beth L Armstrong
- Bishnu Prasad Thapaliya
- Brandon Johnston
- Charles Hawkins
- Christopher Ledford
- Eric Wolfe
- Frederic Vautard
- Hyeonsup Lim
- Ilja Popovs
- Isabelle Snyder
- Jayanthi Kumar
- Jennifer M Pyles
- Jiheon Jun
- Jong K Keum
- Laetitia H Delmau
- Luke Sadergaski
- Marie Romedenne
- Md Faizul Islam
- Meghan Lamm
- Michael Kirka
- Mina Yoon
- Nidia Gallego
- Parans Paranthaman
- Patxi Fernandez-Zelaia
- Priyanshi Agrawal
- Ryan Dehoff
- Santanu Roy
- Saurabh Prakash Pethe
- Subhamay Pramanik
- Tim Graening Seibert
- Tolga Aytug
- Uvinduni Premadasa
- Vera Bocharova
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yan-Ru Lin
- Yingzhong Ma
- Yong Chae Lim
- Zhili Feng

The technologies provides for regeneration of anion-exchange resin.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

The growing demand for electric vehicles (EVs) has necessitated significant advancements in EV charging technologies to ensure efficient and reliable operation.

The growing demand for renewable energy sources has propelled the development of advanced power conversion systems, particularly in applications involving fuel cells.

This invention describes a new class of amphiphilic chelators (extractants) that can selectively separate large, light rare earth elements from heavy, small rare earth elements in solvent extraction schemes.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

The increasing demand for high-purity lanthanides, essential for advanced technologies such as electronics, renewable energy, and medical applications, presents a significant challenge due to their similar chemical properties.