Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Chris Tyler
- Soydan Ozcan
- Justin West
- Meghan Lamm
- Umesh N MARATHE
- Halil Tekinalp
- Ritin Mathews
- Vlastimil Kunc
- Ying Yang
- Ahmed Hassen
- Katie Copenhaver
- Steven Guzorek
- Uday Vaidya
- Alex Roschli
- Alice Perrin
- Beth L Armstrong
- Brian Post
- Dan Coughlin
- David Olvera Trejo
- Georges Chahine
- J.R. R Matheson
- Jaydeep Karandikar
- Jesse Heineman
- Matt Korey
- Pum Kim
- Scott Smith
- Steven J Zinkle
- Vipin Kumar
- Yanli Wang
- Yutai Kato
- Adwoa Owusu
- Akash Jag Prasad
- Akash Phadatare
- Alex Plotkowski
- Amber Hubbard
- Amit Shyam
- Ben Lamm
- Brian Gibson
- Bruce A Pint
- Cait Clarkson
- Calen Kimmell
- Christopher Ledford
- Costas Tsouris
- David Nuttall
- Emma Betters
- Erin Webb
- Evin Carter
- Gabriel Veith
- Gerry Knapp
- Greg Corson
- Gs Jung
- Gyoung Gug Jang
- James A Haynes
- Jeremy Malmstead
- Jim Tobin
- John Potter
- Jong K Keum
- Josh B Harbin
- Josh Crabtree
- Khryslyn G Araño
- Kim Sitzlar
- Kitty K Mccracken
- Marm Dixit
- Michael Kirka
- Mina Yoon
- Nadim Hmeidat
- Nicholas Richter
- Oluwafemi Oyedeji
- Paritosh Mhatre
- Patxi Fernandez-Zelaia
- Radu Custelcean
- Ryan Dehoff
- Sana Elyas
- Sanjita Wasti
- Segun Isaac Talabi
- Shajjad Chowdhury
- Steve Bullock
- Sumit Bahl
- Sunyong Kwon
- Tim Graening Seibert
- Tolga Aytug
- Tony L Schmitz
- Tyler Smith
- Vladimir Orlyanchik
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Xianhui Zhao
- Yan-Ru Lin

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

Wind turbine blades face a harsh environment in which erosion of the leading edge is a major factor for in-use maintenance. Current industrial practices to address this leading edge erosion are replacement of reinforcing materials upon significant damage infliction.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We proposed and developed a carbon nanofiber (CNF) suspension-based sizing agent, that resulted in improved interfacial, and mechanical properties. The CNF dispersed sizing agent can be applied in a relatively simpler way (by passing the continuous tow through it).

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The technologies polymer cellulose nanocomposite mats and process for making same.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.