Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Chris Tyler
- Ilias Belharouak
- Justin West
- Rafal Wojda
- Ritin Mathews
- Prasad Kandula
- Ali Abouimrane
- David Olvera Trejo
- J.R. R Matheson
- Jaydeep Karandikar
- Ruhul Amin
- Scott Smith
- Vandana Rallabandi
- Akash Jag Prasad
- Alex Plotkowski
- Brian Gibson
- Brian Post
- Calen Kimmell
- Christopher Fancher
- David L Wood III
- Emma Betters
- Georgios Polyzos
- Greg Corson
- Hongbin Sun
- Jaswinder Sharma
- Jesse Heineman
- John Potter
- Josh B Harbin
- Junbin Choi
- Lu Yu
- Marcio Magri Kimpara
- Marm Dixit
- Mostak Mohammad
- Omer Onar
- Pradeep Ramuhalli
- Praveen Kumar
- Shajjad Chowdhury
- Subho Mukherjee
- Suman Debnath
- Tony L Schmitz
- Vladimir Orlyanchik
- Yaocai Bai
- Zhijia Du

Misalignment issues of the PWPT system have been addressed. The intercell power transformer has been introduced in order to improve load sharing of the system during a mismatch of the primary single-phase coil and the secondary multi-phase coils.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.

In additive manufacturing large stresses are induced in the build plate and part interface. A result of these stresses are deformations in the build plate and final component.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.

An ORNL invention proposes using 3D printing to make conductors with space-filling thin-wall cross sections. Space-filling thin-wall profiles will maximize the conductor volume while restricting the path for eddy currents induction.