Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Amit Shyam
- Alex Plotkowski
- James A Haynes
- Ryan Dehoff
- Sumit Bahl
- Adam Stevens
- Alice Perrin
- Andres Marquez Rossy
- Andrew F May
- Ben Garrison
- Brad Johnson
- Brian Post
- Charlie Cook
- Christopher Fancher
- Christopher Hershey
- Craig Blue
- Daniel Rasmussen
- Dean T Pierce
- Gerry Knapp
- Gordon Robertson
- Hsin Wang
- James Klett
- Jay Reynolds
- Jeff Brookins
- John Lindahl
- Jovid Rakhmonov
- Mike Zach
- Nedim Cinbiz
- Nicholas Richter
- Nithin Panicker
- Peeyush Nandwana
- Peter Wang
- Prashant Jain
- Rangasayee Kannan
- Roger G Miller
- Sarah Graham
- Sudarsanam Babu
- Sunyong Kwon
- Tony Beard
- Vittorio Badalassi
- William Peter
- Ying Yang
- Yukinori Yamamoto

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

Recent advances in magnetic fusion (tokamak) technology have attracted billions of dollars of investments in startups from venture capitals and corporations to develop devices demonstrating net energy gain in a self-heated burning plasma, such as SPARC (under construction) and

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.