Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Isotope Science and Enrichment Directorate (6)
Researcher
- Blane Fillingim
- Brian Post
- Lauren Heinrich
- Mike Zach
- Peeyush Nandwana
- Sudarsanam Babu
- Thomas Feldhausen
- Yousub Lee
- Alexander I Wiechert
- Andrew F May
- Ben Garrison
- Brad Johnson
- Bruce Moyer
- Callie Goetz
- Charlie Cook
- Christopher Hershey
- Christopher Hobbs
- Costas Tsouris
- Craig Blue
- Daniel Rasmussen
- Debangshu Mukherjee
- Debjani Pal
- Eddie Lopez Honorato
- Fred List III
- Gs Jung
- Gyoung Gug Jang
- Hsin Wang
- James Klett
- Jeffrey Einkauf
- Jennifer M Pyles
- John Lindahl
- Justin Griswold
- Keith Carver
- Kuntal De
- Laetitia H Delmau
- Luke Sadergaski
- Matt Kurley III
- Md Inzamam Ul Haque
- Nedim Cinbiz
- Olga S Ovchinnikova
- Padhraic L Mulligan
- Radu Custelcean
- Ramanan Sankaran
- Richard Howard
- Rodney D Hunt
- Ryan Heldt
- Sandra Davern
- Thomas Butcher
- Tony Beard
- Tyler Gerczak
- Vimal Ramanuj
- Wenjun Ge

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

Ceramic matrix composites are used in several industries, such as aerospace, for lightweight, high quality and high strength materials. But producing them is time consuming and often low quality.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.