Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Alex Plotkowski
- Amit Shyam
- Peeyush Nandwana
- Alexander I Wiechert
- Blane Fillingim
- Brian Post
- Costas Tsouris
- James A Haynes
- Lauren Heinrich
- Sudarsanam Babu
- Sumit Bahl
- Thomas Feldhausen
- Yousub Lee
- Alice Perrin
- Andres Marquez Rossy
- Benjamin Manard
- Charles F Weber
- Debangshu Mukherjee
- Gerry Knapp
- Govindarajan Muralidharan
- Gs Jung
- Gyoung Gug Jang
- Isaac Sikkema
- Joanna Mcfarlane
- Jonathan Willocks
- Joseph Olatt
- Jovid Rakhmonov
- Kunal Mondal
- Mahim Mathur
- Matt Vick
- Md Inzamam Ul Haque
- Mingyan Li
- Nicholas Richter
- Olga S Ovchinnikova
- Oscar Martinez
- Radu Custelcean
- Ramanan Sankaran
- Rose Montgomery
- Ryan Dehoff
- Sam Hollifield
- Sunyong Kwon
- Thomas R Muth
- Vandana Rallabandi
- Venugopal K Varma
- Vimal Ramanuj
- Wenjun Ge
- Ying Yang

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

Ceramic matrix composites are used in several industries, such as aerospace, for lightweight, high quality and high strength materials. But producing them is time consuming and often low quality.

Real-time tracking and monitoring of radioactive/nuclear materials during transportation is a critical need to ensure safety and security. Current technologies rely on simple tagging, using sensors attached to transport containers, but they have limitations.

This innovative approach combines optical and spectral imaging data via machine learning to accurately predict cancer labels directly from tissue images.

A high-strength, heat-resistant Al-Ce-Ni alloy optimized for additive manufacturing in industrial applications.