Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate
(17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ilias Belharouak
- Alex Plotkowski
- Amit Shyam
- Srikanth Yoginath
- Ali Abouimrane
- Anees Alnajjar
- Georgios Polyzos
- James A Haynes
- James J Nutaro
- Jaswinder Sharma
- Pratishtha Shukla
- Ruhul Amin
- Sergiy Kalnaus
- Sudip Seal
- Sumit Bahl
- Aaron Werth
- Alice Perrin
- Ali Passian
- Andres Marquez Rossy
- Beth L Armstrong
- Craig A Bridges
- David L Wood III
- Emilio Piesciorovsky
- Gary Hahn
- Gerry Knapp
- Harper Jordan
- Hongbin Sun
- Jason Jarnagin
- Joel Asiamah
- Joel Dawson
- Jovid Rakhmonov
- Junbin Choi
- Lu Yu
- Mariam Kiran
- Mark Provo II
- Marm Dixit
- Nageswara Rao
- Nance Ericson
- Nancy Dudney
- Nicholas Richter
- Peeyush Nandwana
- Pradeep Ramuhalli
- Raymond Borges Hink
- Rob Root
- Ryan Dehoff
- Sheng Dai
- Sunyong Kwon
- Varisara Tansakul
- Yaocai Bai
- Yarom Polsky
- Ying Yang
- Zhijia Du

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

Digital twins (DTs) have emerged as essential tools for monitoring, predicting, and optimizing physical systems by using real-time data.

Simulation cloning is a technique in which dynamically cloned simulations’ state spaces differ from their parent simulation due to intervening events.

Electrochemistry synthesis and characterization testing typically occurs manually at a research facility.

The co-processing of cathode and composite electrolyte for solid state polymer batteries has been developed. A traditional uncalendared cathode of e.g.