Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Andrzej Nycz
- Ryan Dehoff
- Adam M Guss
- Chris Masuo
- Vincent Paquit
- Amit Shyam
- Peter Wang
- Alex Plotkowski
- Alex Walters
- Michael Kirka
- Peeyush Nandwana
- Rangasayee Kannan
- Singanallur Venkatakrishnan
- Srikanth Yoginath
- Adam Stevens
- Alex Roschli
- Alice Perrin
- Amir K Ziabari
- Anees Alnajjar
- Brian Gibson
- Brian Post
- Clay Leach
- James A Haynes
- James J Nutaro
- Josh Michener
- Joshua Vaughan
- Kuntal De
- Luke Meyer
- Philip Bingham
- Pratishtha Shukla
- Sergiy Kalnaus
- Sudip Seal
- Sumit Bahl
- Udaya C Kalluri
- William Carter
- Xiaohan Yang
- Ying Yang
- Akash Jag Prasad
- Ali Passian
- Andres Marquez Rossy
- Austin Carroll
- Beth L Armstrong
- Biruk A Feyissa
- Calen Kimmell
- Cameron Adkins
- Canhai Lai
- Carrie Eckert
- Chelo Chavez
- Christopher Fancher
- Christopher Ledford
- Chris Tyler
- Costas Tsouris
- Craig A Bridges
- Debjani Pal
- Diana E Hun
- Erin Webb
- Evin Carter
- Georgios Polyzos
- Gerald Tuskan
- Gerry Knapp
- Gina Accawi
- Gordon Robertson
- Gurneesh Jatana
- Harper Jordan
- Ilenne Del Valle Kessra
- Isaiah Dishner
- Isha Bhandari
- J.R. R Matheson
- James Haley
- James Parks II
- Jaswinder Sharma
- Jaydeep Karandikar
- Jay D Huenemann
- Jay Reynolds
- Jeff Brookins
- Jeff Foster
- Jeremy Malmstead
- Jesse Heineman
- Joanna Tannous
- Joel Asiamah
- Joel Dawson
- John F Cahill
- John Potter
- Jovid Rakhmonov
- Kitty K Mccracken
- Kyle Davis
- Liam White
- Liangyu Qian
- Mariam Kiran
- Mark M Root
- Michael Borish
- Nageswara Rao
- Nance Ericson
- Nancy Dudney
- Nicholas Richter
- Obaid Rahman
- Oluwafemi Oyedeji
- Patxi Fernandez-Zelaia
- Paul Abraham
- Philip Boudreaux
- Riley Wallace
- Ritin Mathews
- Roger G Miller
- Sarah Graham
- Serena Chen
- Sheng Dai
- Soydan Ozcan
- Sudarsanam Babu
- Sunyong Kwon
- Tyler Smith
- Varisara Tansakul
- Vilmos Kertesz
- Vladimir Orlyanchik
- William Peter
- Xianhui Zhao
- Yan-Ru Lin
- Yang Liu
- Yukinori Yamamoto
- Zackary Snow

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.