Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Alex Plotkowski
- Amit Shyam
- Srikanth Yoginath
- Anees Alnajjar
- James A Haynes
- James J Nutaro
- Pratishtha Shukla
- Sergiy Kalnaus
- Sudip Seal
- Sumit Bahl
- Alice Perrin
- Ali Passian
- Andres Marquez Rossy
- Beth L Armstrong
- Craig A Bridges
- Daniel Jacobson
- Georgios Polyzos
- Gerry Knapp
- Glenn R Romanoski
- Govindarajan Muralidharan
- Harper Jordan
- Jaswinder Sharma
- Joel Asiamah
- Joel Dawson
- Jovid Rakhmonov
- Mariam Kiran
- Nageswara Rao
- Nance Ericson
- Nancy Dudney
- Nicholas Richter
- Peeyush Nandwana
- Rose Montgomery
- Ryan Dehoff
- Sheng Dai
- Sunyong Kwon
- Thomas R Muth
- Varisara Tansakul
- Venugopal K Varma
- Ying Yang

Mechanism-Based Biological Inference via Multiplex Networks, AI Agents and Cross-Species Translation
This invention provides a platform that uses AI agents and biological networks to uncover and interpret disease-relevant biological mechanisms.

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.

Digital twins (DTs) have emerged as essential tools for monitoring, predicting, and optimizing physical systems by using real-time data.

Simulation cloning is a technique in which dynamically cloned simulations’ state spaces differ from their parent simulation due to intervening events.

Electrochemistry synthesis and characterization testing typically occurs manually at a research facility.

The co-processing of cathode and composite electrolyte for solid state polymer batteries has been developed. A traditional uncalendared cathode of e.g.