Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Alex Plotkowski
- Amit Shyam
- Jaswinder Sharma
- Srikanth Yoginath
- Alexey Serov
- Anees Alnajjar
- Beth L Armstrong
- Georgios Polyzos
- James A Haynes
- James J Nutaro
- Jonathan Willocks
- Pratishtha Shukla
- Sergiy Kalnaus
- Sudip Seal
- Sumit Bahl
- Xiang Lyu
- Alexander I Wiechert
- Alice Perrin
- Ali Passian
- Amit K Naskar
- Andres Marquez Rossy
- Benjamin Manard
- Charles F Weber
- Costas Tsouris
- Craig A Bridges
- Gabriel Veith
- Gerry Knapp
- Govindarajan Muralidharan
- Harper Jordan
- Holly Humphrey
- Isaac Sikkema
- James Szybist
- Joanna Mcfarlane
- Joel Asiamah
- Joel Dawson
- Joseph Olatt
- Jovid Rakhmonov
- Junbin Choi
- Khryslyn G Araño
- Kunal Mondal
- Logan Kearney
- Mahim Mathur
- Mariam Kiran
- Marm Dixit
- Matt Vick
- Meghan Lamm
- Michael Toomey
- Michelle Lehmann
- Mingyan Li
- Nageswara Rao
- Nance Ericson
- Nancy Dudney
- Nicholas Richter
- Nihal Kanbargi
- Oscar Martinez
- Peeyush Nandwana
- Ritu Sahore
- Rose Montgomery
- Ryan Dehoff
- Sam Hollifield
- Sheng Dai
- Sunyong Kwon
- Thomas R Muth
- Todd Toops
- Vandana Rallabandi
- Varisara Tansakul
- Venugopal K Varma
- Ying Yang

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

Digital twins (DTs) have emerged as essential tools for monitoring, predicting, and optimizing physical systems by using real-time data.

Simulation cloning is a technique in which dynamically cloned simulations’ state spaces differ from their parent simulation due to intervening events.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.