Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- National Security Sciences Directorate
(17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
- (-) Isotope Science and Enrichment Directorate (6)
Researcher
- Yong Chae Lim
- Mike Zach
- Rangasayee Kannan
- Adam Stevens
- Alexander I Wiechert
- Andrew F May
- Ben Garrison
- Benjamin Manard
- Brad Johnson
- Brian Post
- Bruce Moyer
- Bryan Lim
- Charles F Weber
- Charlie Cook
- Christopher Hershey
- Costas Tsouris
- Craig Blue
- Daniel Rasmussen
- Debjani Pal
- Hsin Wang
- James Klett
- Jeffrey Einkauf
- Jennifer M Pyles
- Jiheon Jun
- Joanna Mcfarlane
- John Lindahl
- Jonathan Willocks
- Justin Griswold
- Kuntal De
- Laetitia H Delmau
- Louise G Evans
- Luke Sadergaski
- Matt Vick
- Nedim Cinbiz
- Padhraic L Mulligan
- Peeyush Nandwana
- Priyanshi Agrawal
- Richard L. Reed
- Roger G Miller
- Ryan Dehoff
- Sandra Davern
- Sarah Graham
- Sudarsanam Babu
- Tomas Grejtak
- Tony Beard
- Vandana Rallabandi
- William Peter
- Yiyu Wang
- Yukinori Yamamoto
- Zhili Feng

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.

Welding high temperature and/or high strength materials for aerospace or automobile manufacturing is challenging.