Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities
(27)
Researcher
- Amit Shyam
- Beth L Armstrong
- Peeyush Nandwana
- Alex Plotkowski
- Brian Post
- Jun Qu
- Kyle Kelley
- Rama K Vasudevan
- Rangasayee Kannan
- Sudarsanam Babu
- Yong Chae Lim
- Blane Fillingim
- Corson Cramer
- Hongbin Sun
- James A Haynes
- Lauren Heinrich
- Meghan Lamm
- Prashant Jain
- Ryan Dehoff
- Sergei V Kalinin
- Stephen Jesse
- Steve Bullock
- Sumit Bahl
- Thomas Feldhausen
- Tomas Grejtak
- Ying Yang
- Yousub Lee
- Adam Stevens
- Alexander I Wiechert
- Alice Perrin
- An-Ping Li
- Andres Marquez Rossy
- Andrew F May
- Andrew Lupini
- Anton Ievlev
- Ben Garrison
- Benjamin Manard
- Ben Lamm
- Bogdan Dryzhakov
- Brad Johnson
- Brandon A Wilson
- Bruce A Pint
- Bryan Lim
- Callie Goetz
- Charles F Weber
- Christopher Fancher
- Christopher Hobbs
- Christopher Ledford
- Costas Tsouris
- David J Mitchell
- Dean T Pierce
- Eddie Lopez Honorato
- Ethan Self
- Fred List III
- Gabriel Veith
- Gerry Knapp
- Glenn R Romanoski
- Gordon Robertson
- Govindarajan Muralidharan
- Hoyeon Jeon
- Hsin Wang
- Huixin (anna) Jiang
- Ian Greenquist
- Ilias Belharouak
- Isaac Sikkema
- James Klett
- Jamieson Brechtl
- Jay Reynolds
- Jeff Brookins
- Jewook Park
- Jiheon Jun
- Joanna Mcfarlane
- Jonathan Willocks
- Jordan Wright
- Joseph Olatt
- Jovid Rakhmonov
- Kai Li
- Kashif Nawaz
- Keith Carver
- Kevin M Roccapriore
- Khryslyn G Araño
- Kunal Mondal
- Liam Collins
- Mahim Mathur
- Marm Dixit
- Marti Checa Nualart
- Matthew S Chambers
- Matt Kurley III
- Matt Vick
- Maxim A Ziatdinov
- Michael Kirka
- Mike Zach
- Mingyan Li
- Nancy Dudney
- Nate See
- N Dianne Ezell
- Nedim Cinbiz
- Neus Domingo Marimon
- Nicholas Richter
- Nithin Panicker
- Olga S Ovchinnikova
- Ondrej Dyck
- Oscar Martinez
- Peter Wang
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Priyanshi Agrawal
- Richard Howard
- Rodney D Hunt
- Roger G Miller
- Rose Montgomery
- Ruhul Amin
- Ryan Heldt
- Saban Hus
- Sam Hollifield
- Sarah Graham
- Sergiy Kalnaus
- Shajjad Chowdhury
- Steven J Zinkle
- Steven Randolph
- Sunyong Kwon
- Thomas Butcher
- Thomas R Muth
- Tim Graening Seibert
- Tolga Aytug
- Trevor Aguirre
- Tyler Gerczak
- Ugur Mertyurek
- Vandana Rallabandi
- Venugopal K Varma
- Vishaldeep Sharma
- Vittorio Badalassi
- Weicheng Zhong
- Wei Tang
- William Peter
- Xiang Chen
- Yanli Wang
- Yiyu Wang
- Yongtao Liu
- Yukinori Yamamoto
- Yutai Kato
- Zhili Feng

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.